If it's not what You are looking for type in the equation solver your own equation and let us solve it.
5x^2+192x-140=0
a = 5; b = 192; c = -140;
Δ = b2-4ac
Δ = 1922-4·5·(-140)
Δ = 39664
The delta value is higher than zero, so the equation has two solutions
We use following formulas to calculate our solutions:$x_{1}=\frac{-b-\sqrt{\Delta}}{2a}$$x_{2}=\frac{-b+\sqrt{\Delta}}{2a}$
The end solution:
$\sqrt{\Delta}=\sqrt{39664}=\sqrt{16*2479}=\sqrt{16}*\sqrt{2479}=4\sqrt{2479}$$x_{1}=\frac{-b-\sqrt{\Delta}}{2a}=\frac{-(192)-4\sqrt{2479}}{2*5}=\frac{-192-4\sqrt{2479}}{10} $$x_{2}=\frac{-b+\sqrt{\Delta}}{2a}=\frac{-(192)+4\sqrt{2479}}{2*5}=\frac{-192+4\sqrt{2479}}{10} $
| 175=17x+8+17x-3 | | 3(x3)=-18 | | x=3(2+4)-1(14+4) | | 4w×4=120 | | 0.84n+1=-14 | | 6x-12+13=2x-8x+6 | | 5x32=2x+11 | | -24=4e+2e | | 2x+16=5x+34 | | 2=2h-3h | | 2c+82+4c-46=180 | | x=(2+3*7)^0 | | 10c-38+10c+25+6c-15=180 | | 8x+9-3x-6=2x-9+6x | | Y^2+5.76y-169=0 | | y/6+y/4=7/6 | | 2u-11+2u-12+5u=180 | | y+41+47-4+95=180 | | t+19+7t-4+33=180 | | (2x-400)=3 | | 4+x=20.5 | | 20t+33+20t+39+68=180 | | 2m=−(4+m)+2m, | | /2(t+7)=48 | | s+27+24s-4+18s-15=180 | | 30b+32+40b+40b+43=180 | | 3x−9=5−3x | | z+3+2z-7+3z+4=180 | | w-7+34+38=180 | | 103-(5x+6)=5(x+4)+x | | 200=-5(-5+7x) | | 2x-20+3x-20+30=180 |